On two kinds of the reverse half-discrete Mulholland-type inequalities involving higher-order derivative function

نویسندگان

چکیده

Abstract By means of the weight functions, Hermite–Hadamard’s inequality, and techniques real analysis, a new more accurate reverse half-discrete Mulholland-type inequality involving one higher-order derivative function is given. The equivalent statements best possible constant factor related to few parameters, forms, several particular inequalities are provided. Another kind reverses also considered.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On More Accurate Reverse Multidimensional Half–discrete Hilbert–type Inequalities

By using the methods of weight functions and Hermite-Hadamard’s inequality, two kinds of more accurate equivalent reverse multidimensional half-discrete Hilbert-type inequalities with the kernel of hyperbolic cotangent function are given. The constant factor related to the Riemann zeta function is proved to be the best possible. Mathematics subject classification (2010): 26D15, 47A07, 37A10.

متن کامل

extensions of some polynomial inequalities to the polar derivative

توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی

15 صفحه اول

On Hadamard-Type Inequalities Involving Several Kinds of Convexity

1 Department of Mathematics, K.K. Education Faculty, Atatürk University, Campus, 25240 Erzurum, Turkey 2 Research Group in Mathematical Inequalities & Applications, School of Engineering & Science, Victoria University, P.O. Box 14428, Melbourne City, VIC 8001, Australia 3 School of Computational and Applied Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, So...

متن کامل

Inequalities for discrete higher order convex functions

[1] E. BOROS AND A. PRÉKOPA, Closed Form Two-Sided Bounds for Probabilities That Exactly r and at Least r out of n Events Occur, Mathematics of Operations Research, 14 (1989), 317–342. [2] D. DAWSON AND A. SANKOFF, An Inequality for Probabilities, Proceedings of the American Mathematical Society, 18 (1967), 504–507. [3] H.P. EDMUNDSON, Bounds on the Expectation of a Convex Function of a Random ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2021

ISSN: ['1025-5834', '1029-242X']

DOI: https://doi.org/10.1186/s13660-021-02674-z